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lished mesoionic compounds12 and heteroaromatic be-
taines.2-9-10-13 

Work is currently underway in this laboratory defining the 
scope and limitations of these unique compounds, as well as 
studying their physical and chemical properties. 
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A Stereocontrolled Synthetic Entry to the 
Primary Prostaglandins from Butadiene. Oxy Anionic 
Substituent Effects on [l,5]-Hydrogen Sigmatropy 

Sir: 

Many of the elegant schemes devised to gain access to the 
prostaglandins have capitalized on the availability of starting 
materials which contain a suitably functionalized five-mem-
bered ring.' Herein we describe a new direct approach to this 
challenging problem which (1) enjoys the economic advantage 
of being based on butadiene as raw material, (2) provides ac­
cess to all of the primary prostaglandins and a number of an­
alogues from a single precursor, and (3) allows for optical 
resolution at a pivotal early stage. The crux of the present 
strategy lies in efficient overriding by anionic [3,3]-carbon 
sigmatropy of the normal predilection of a polyunsaturated 
medium-sized ring for thermal [l,5]-hydrogen sigmatropy. 

A product of butadiene cyclodimerization,2 the commer­
cially plentiful m2-l,5-cyclooctadiene (1) was efficiently 
transformed into m3-2,4,7-cyclononatrienol (2) by a previ­
ously described procedure.3 When solutions of 2 in benzene 
were heated at 160 0C for 3 h in sealed tubes, smooth conver­
sion into a mixture of m2-3,7-cyclononadienone (80%) and 
aldehyde 3 (20%) was observed. The undesirable dominant 
formation of the dienone, which is in accord with kinetically 
favored [l,5]-hydrogen shift within 2, was totally overcome 

CHO 

O - Qfm - o:i 
I l 5, 

by alternate treatment with 1.2 equiv of oil-free potassium 
hydride in anhydrous tetrahydrofuran at room temperature.4 

Under these conditions, quantitative conversion into 3, ho­
mogeneous by TLC and VPC analysis, materialized. A note­
worthy feature of this reaction is that it represents the first 
example where the process favored upon thermal activation 
does not continue to dominate under anionic conditions. Un­
answered, however, is the question of whether [1,5]-hydrogen 
sigmatropy is affected by a substituent change from R = H to 
R = K. Since this reaction class had not previously been given 
attention, we have carried out quantitative kinetic studies on 
2 and several additional prototypical dienols. The present 
findings indicate that the general effect of oxy substitution 
on neighboring center chemistry remains substantial, although 
appreciably less so for [1,5]-H than for [3,3]-C sigma­
tropy. 

The energetics of thermal [1,5]-H migration in neutral 2, 
including the activation parameters (Table I), are seen to be 
slightly more elevated than those associated with comparable 
processes in unsaturated seven-5 and eight-membered rings.6 

This somewhat heightened barrier to rearrangement is likely 
the end result of a less than ideal stereoelectronic alignment 
between the C-H bond and the pir components of the flanking 
diene moiety. Conversion into the lithium alkoxide did not 
appear to result in marked acceleration of either rearrange­
ment. The situation for the oxy-Cope process improved when 
M = Na+; however, the behavior of the potassium alkoxide was 
truly spectacular (Table I). The rate enhancement for [3,3]-C 
shift proved to be very large (1010 at 25 0C), in agreement with 
precedent.4 

The systems chosen for assessment of counterion-controlled 
[1,5]-H sigmatropy were the cyclic dienols 4-6, prepared by 
photooxygenation of ci*52-l,4-cyclononadiene6c and 1,4-cy-
clooctadiene,7 as well as diisobutylaluminum hydride reduction 
of 2,4-cycloheptadienone,8 respectively. In each of the three 

4 5 6 

examples, thermal activation proceeded smoothly to provide 
the corresponding /3,7-unsaturated ketone exclusively. First-
order rate constants for the formation of 3-cyclononenone,9 

3-cyclooctenone,9 and 3-cycloheptenone9 afforded linear 
Arrhenius plots and the activation parameters shown in Table 
II. From these rate data, it can be seen that the ease of [ 1,5]-H 
shift increases as the ring is decreased in size, as expected from 
the stereoelectronic considerations mentioned earlier. 

When 4 was treated with 1.1 equiv of potassium hydride in 
dry tetrahydrofuran at room temperature, clean, high yield 
conversion into 3-cyclononenone (post quench) occurred in a 
short time. The behavior of 5 was entirely analogous. An ex­
ception to this trend was found in the case of 6 which rear­
ranged to mixtures of 3-cycloheptenone (major) and 3,5-cy-
cloheptadienol (minor) in ratios which proved to be tempera­
ture dependent. Quantitative kinetic examination of these 
reactions at three temperatures confirmed that the potassium 
alkoxides were experiencing [1,5]-H migration at significantly 
enhanced rates (Table II). Important observations are the 
105-106 rate accelerations common to all three systems, irre­
spective of their ring size, and the overcoming of substantially 
more negative AS* values by appreciable decreases in AH* 
(9-14 kcal/mol). In the presence of 5 equiv of 18-crown-6, a 
limiting ninefold additional rate acceleration was seen. For 
[3,3]-C migration, this factor is 180.4 Under these conditions, 
6-O-K+ is converted only into 3,5-cycloheptadienol. This may 
arise from an enhanced predilection on the part of the in­
creasingly "naked" alkoxide anion to experience intramolec-
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Table I. Rate Constant and Activation Parameter Data for Rearrangement of 2 and Several of its Alkoxide Salts0 

substrate 

4 

K+ salt 

Na+ salt 
Li+ salt 

temp, 0C 

169.5 
159.5 
149.5 
25c 

15 
5 
-3.5 
25c 

66 
66 

Jk[3,3],s-'* 

7.44 X 10"5 

2.97 X 10"5 

1.16 X 10-5 

4.02X 10"13 

6.62 X 10"4 

2.52 ± 10"4 

1.05 X 10-4 

1.63 X 10"3 

5.3 X 10~4 

too slow to measure 

Jt [1,5], s - ' * 

2.76 X 10~4 

1.25 X 10"4 

5.43 X 10-5 

1.62 X 10"" 

thermodynamic parameters for 
oxy-Cope process (25 0C) 

£ a = 34.5 kcal/mol 
AH* = 33.9 kcal/mol 
AG* = 34.4 kcal/mol 
A5* = -1.4eu 
£ a = 15.4 kcal/mol 
AH* = 14.8 kcal/mol 
AG* = 21.3 kcal/mol 
AS* =-21.7 eu 

" Anhydrous tetrahydrofuran was employed as solvent in all runs. * Average value derived from duplicate runs.' 
upon the activation parameters. 

Extrapolated values based 

Table II, Kinetic and Thermodynamic Parameters for [1,5]-Hydride Shifting in 4-6 and Their Potassium Alkoxides (25 0C)0 

substrate 

4-OH 

4-0-K+ 

5-OH 

5-0-K+ 

6-OH 

6-0"K+ 

Jk(25 0C)1* s-' 

2.94 X 10-" 

6.87 X 10-5 

1.33 X 10-8 

2.39 X 10-3 

2.87 X 10"8 

4.0 X 10~3 c 

£ a . kcal/mol 

29.0 

14.7 
24.8 

15.6 
24.6 

13.8 

AH*, kcal/mol 

28.4 

14.1 
24.2 

15.1 
24.0 

13.2 

AG* , kcal/mol 

31.8 

23.1 
28.2 

21.0 
27.7 

20.7 

AS*,eu 

-11.4 

-30.3 
-13.3 

-20 
-12.5 

-25.1 

^anionic , - , , 0 ^ \ 

* thermal 

2.3 X 106 

1.8 X 105 

1.4 X 105 

" Anhydrous tetrahydrofuran was employed as solvent in all runs. * Extrapolated values based upon the activation parameters, 
apply only to 3-cycloheptenone production. 

Rate data 

ular hydride transfer as in A, although intermolecular proton 
transfers are as likely in light of the nature of the data.10 

CL 

Oxidation of 3 with silver oxide (1.2 equiv) and sodium 
hydroxide (7 equiv) in aqueous solution" produced the oily 
carboxylic acid 7 (75% yield) which was efficiently cyclized 
to 8, mp 71-71.5 0C, using standard iodolactionization 
methodology.'2 The regiospecific formation of 8 stems prin­
cipally from the kinetic ramifications of 7- vs. 6-lactone for­
mation.13 Ozonolysis of 8 was effected at -78 0C in dichlo-
romethane solution containing 5 equiv of methanol. Subse­
quent reductive workup with dimethyl sulfide (1.5 equiv) de­
livered an aldehyde whose epimerization was efficiently ac­
complished in a two-phase system of concentrated hydrochloric 
acid and 2% isopropyl alcohol in chloroform. Following addi­
tion of trimethyl orthoformate (9 equiv) and passage of an 
additional 24 h, oily iodo acetal 9 was isolated in 70% overall 
yield from 7. Conversion of 9 into the desired aldehyde 10 was 
effected by heating (80 0C) in toluene with 1.1 equiv of tri-
n-butyltin hydride14 and subsequent hydrolysis with 4 N hy­
drochloric acid and chloroform under two-phase conditions. 
A shorter alternative route to 10 consisted of reductive de-
halogenation of 8 and ozonolysis followed by acidic epimeri­
zation (75%). In light of the prior elaboration of several 11-
deoxy prostaglandins from 10,1516 a formal synthesis of these 
substances is achieved. 

Dehydroiodination of 9 with DBU (1.25 equiv) in tetrahy­
drofuran (reflux, 5 h) resulted in regiospecific introduction of 
a double bond to give oily lactone 11 in 90% yield. The ready 
availability of the latter opens a direct access route to the A 
prostaglandins.17 

Further, 11 can be converted into 12 (80%) by reaction with 

iodine (1 equiv) and silver acetate (1.2 equiv) in acetic acid at 
room temperature for 2Oh.18 Reductive deiodination of this 
intermediate furnished a trans-locked /?-acetoxy acetal which 
underwent facile elimination in the presence of 4 N hydro­
chloric acid-chloroform (two phase) to give 13 (81%), a 
well-established precursor to the C prostaglandins19 and 
thromboxane B2.20 Usefully, the same deiodination product 
was easily transformed into the well-known Corey aldehyde 
14 in three steps (K2CO3, CH3OH, 20 0C, 0.5 h;/>-phenyl-
benzoyl chloride (2 equiv), pyridine, toluene, 20 0C, 24 h;14 

concentrated HCl, CHCl3 containing 2% 2-propanol) and an 
overall yield of 60%. The successful elaboration of F prosta­
glandins from 14 has been reported previously.21,22 

In anticipation of an effective resolution of carboxylic acid 
7, a spectroscopic technique which would permit accurate and 
convenient assessment of its enantiomeric purity was sought. 
To this end, 7 was transformed via 8 to the unsaturated lactone 

P 0 
COOH 0 A Q< 

CO "^-CO-* i~CL 
v A 

OAc 

I 
0 

CH(OCH3I2 

A 
Ct 

x 1 
9 CHtOCHj)2 

CH(OCH3L 

0 
OA 

CHO 

a CHO 

0 

oV^CHO 
PBPCO 

!4 
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15 (Bu3SnH, toluene, 80 0C) with 95% efficiency. Exposure 
of 15 to 3 equiv of methyllithium afforded diol 16 which was 
directly subjected to NMR examination (CDCl3 solution).23 

In the presence of ~30 mol % of tris[(trifluoromethyl)hy-
droxymethyIene-rf-camphorato]europium(III), the di-
astereotopic methyl groups appear as two equally intense sets 
of twinned singlets at 8 4.0, 3.8,2.7, and 2.5, sufficiently sep­
arated for accurate integration. Evidently, coordination to the 
lanthanide ion is adequate to cause restricted rotation about 
the tertiary hydroxyl bearing carbon. 

The resolution of (±)-7 with enrfo-bornylamine24 afforded 
a diastereomeric crystalline salt, mp 107-108 0C, [a]22D 
+ 114° (c 2.72, C2H5OH), after several recrystallizations from 
acetone. Recovery of the free acid from this salt gave an oily 

P ru OH 

f0H %\ H|H 3^CH3 

I 15 !§ 

product, [a]2 2
D +151° (c 3.22, C2H5OH). The sequential 

conversion of this material into optically active 8, [a] 22D 
-21.5° (c 2.34, C2H5OH), and then into 16, followed by 
Eu(tfc)3 analysis, revealed that enantiomeric enrichment had 
progressed to a level of >98% ee. That the desired antipode had 
been obtained was established by conversion of the acid into 
(+)-13, [a]2 3

D +236° (c 1.06, CHCl3). When allowance is 
made for optical purity, the extrapolated rotation for (+)-13 
becomes 241°, in excellent agreement with the [a]o of an 
authentic pure sample.25 

Thus, a preparatively useful route to a wide selection of 
prostaglandin hormones from the simplest of achiral conju­
gated dienes has become available. A noteworthy feature of 
this synthesis, apart from its simplicity, is the unambiguous 
placement of four contiguous chiral centers about a cyclo-
pentane ring without the benefit of a stereodirecting group in 
either 1 or 2. 
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Asymmetric Total Synthesis of Brevianamide E 

Sir: 

The structure of brevianamide E, isolated from the culture 
medium of Penicillium brevicompactum, was assigned as 1 
mainly on the basis of spectroscopic evidence and plausible 
biogenetic argument.1 More recently a degradation product 
of brevianamide E, deoxybrevianamide E [L-prolyl-2-(l',l'-
dimethy!allyl)tryptophyldiketopiperazine (2)], was found in 
a toxigenic fungi, Aspergillus ustus,2 and synthesized.3 

H JL Ti ! 7 » L- ' *J ii i " 

1 2 

However the stereochemistry of brevianamide E remained 
obscure. We here report the first total synthesis of optically 
active brevianamide E, which determines the relative stereo­
chemistry and the absolute configuration. 

Schotten-Baumann reaction of the acid chloride of N-
benzyloxycarbonyl-L-proline (3) with dimethyl aminomalo-
nate4 gave the amide 4 (Scheme I), mp 75.5-76 °C, [a] 18D 
-43° (c 0.1, EtOH), in 69% yield. After debenzyloxycar-
bonylation of 4, using 20% palladium/charcoal under 2 atm 
of hydrogen in methanol, the resulting amine 5 was heated at 
120 °C for 1 h to afford the diketopiperazine 6 in 40% yield. 
Furthermore this cyclization was found to be effectively cat­
alyzed by 2-hydroxypyridine.5 Thus 6 was obtained as a single 
stereoisomer, mp 64-65 0C, [a]1 8

D -54° (c 0.111, MeOH), 
in 93% yield from 4, by heating 5 at 70 0C for 1 h in the pres­
ence of a catalytic amount of 2-hydroxypyridine. 

Condensation of 6 with 3-dimethylaminomethyl-2-(l',-
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